Complex Network Analysis In Python: Recognize - Construct - Visualize - Analyze - Interpret - Dmitry Zinoviev (novo/ingles)
em 12x
Vendido por SPECTRO_CD
+1000 Produtos
MercadoLíder
É um dos melhores do site!
+1000
Vendas concluídas
Oferece um bom atendimento
Entrega os produtos dentro do prazo


Características do produto
Características principais
Autor | Dmitry Zinoviev |
---|---|
Idioma | Inglês |
Editora do livro | Pragmatic Bookshelf |
É kit | Não |
Capa do livro | Mole |
Com índice | Não |
Ano de publicação | 1 |
Outros
Quantidade de páginas | 262 |
---|---|
Altura | 29 cm |
Largura | 19 cm |
Peso | 400 g |
Com páginas para colorir | Não |
Com realidade aumentada | Não |
Tradutores | Soares Antonio de Macedo |
Gênero do livro | HQ |
Tipo de narração | HQ |
Tamanho do livro | Médio |
Idade mínima recomendada | 1 anos |
Escrito em letra maiúscula | Não |
Quantidade de livros por kit | 1 |
Ilustradores | Spiegelman Art |
Descrição
ATENÇÃO ATENÇÃO
NOVO, LACRADO
EM INGLES
ENVIO IMEDIATO
TEMOS CENTENAS DE TITULOS
Construct, analyze, and visualize networks with networkx, a Python language module. Network analysis is a powerful tool you can apply to a multitude of datasets and situations. Discover how to work with all kinds of networks, including social, product, temporal, spatial, and semantic networks. Convert almost any real-world data into a complex network--such as recommendations on co-using cosmetic products, muddy hedge fund connections, and online friendships. Analyze and visualize the network, and make business decisions based on your analysis. If you're a curious Python programmer, a data scientist, or a CNA specialist interested in mechanizing mundane tasks, you'll increase your productivity exponentially.
Complex network analysis used to be done by hand or with non-programmable network analysis tools, but not anymore! You can now automate and program these tasks in Python. Complex networks are collections of connected items, words, concepts, or people. By exploring their structure and individual elements, we can learn about their meaning, evolution, and resilience.
Starting with simple networks, convert real-life and synthetic network graphs into networkx data structures. Look at more sophisticated networks and learn more powerful machinery to handle centrality calculation, blockmodeling, and clique and community detection. Get familiar with presentation-quality network visualization tools, both programmable and interactive--such as Gephi, a CNA explorer. Adapt the patterns from the case studies to your problems. Explore big networks with NetworKit, a high-performance networkx substitute. Each part in the book gives you an overview of a class of networks, includes a practical study of networkx functions and techniques, and concludes with case studies from various fields, including social networking, anthropology, marketing, and sports analytics.
Combine your CNA and Python programming skills to become a better network analyst, a more accomplished data scientist, and a more versatile programmer.
Perguntas e respostas
Não fizeram nenhuma pergunta ainda.
Faça a primeira!